The value of 50C03−50C14+50C25+⋯+50C5053 is equal to
∫10x3(1−x)50dx
∫10x(1−x)50dx
151−252+153
170278
50C03−50C14+⋯+50C5053=∫10 50C0x2− 50C1x3+ 50C2x4+⋯+ 50C50x52dx=∫10 x2(1−x)50dx=∫10(1−x)2x50dx=∫10(1−2x+x2)x50dx=151−252+153