The correct option is B 1n+1−1n+2
∫10x(1−x)ndx
Substituting x=sin2θ
dx=2sinθcosθdθ and x=0, θ=0, x=1, θ=π/2
∴ ∫10x(1−x)ndx=∫π/20sin2θcos2n(2sinθcosθ)dθ
2∫π20sin3θcos2n+1θdθ
Using ∫π/20sin2n+1θcos2n+1dθ=[(2n)(2n−2)...2][(2n)(2n−2)...2](4n+2)(4n)(4n−2)...2
∴ 2∫π/20sin3θcos2n+1θdθ=2[2×(2n)(2n−2)(2n−4)...4.2](2n+4)(2n+2)(2n)(2n−2)...4.2
=2×2×1(2n+4)(2n+2)=1(n+2)(n+1)
=1n+1−1n+2 (by partial fraction)