∫102x2+3x+3(x+1)(x2+2x+2)dx∫102x2+4x+4−x−1(x+1)(x2+2x+2)dx=∫102(x2+2x+2)dx(x+1)(x2+2x+2)−∫10(x+1)dx(x+1)(x2+2x+2)=∫102x+1dx−∫10dxx2+2x+1+1
=[2ln|x+1|]10−∫10dx1+(x+1)2=[2ln2−2ln1−tan−1(x+1)]10=2ln2−tan−12+tan−11=2ln2−tan−1[2−11+2]=2ln2−tan−113+C