The correct option is C 12 or 14
We have
(k−12)x2+2(k−12)x+2=0
For coincident or equal roots, D = 0
i.e b2−4ac=0
Here,
a = (k -12)
b = 2(k - 12)
c = 2
⇒[2(k−12)]2−4(k−12)×2=0
⇒2(k−12) [2(k−12)−4]=0
⇒(k−12)[2k−24−4]=0
⇒(k−12)(2k−28)=0
⇒(k−12)=0 or (2k−28)=0
⇒k=12 or k=14