The correct option is A 9,15
As m1, m2, m3 are roots of m3−9m2+23m−15=0
⇒ (m−1)(m−3)(m−5)=0
⇒ m1=1, m2=3, m3=5
∴ Required solution is y=c1ex+c2e3x+c3e5x (i)
On Differentiating w.r to x both sides we get
⇒ y′=c1ex+3c2e3x+5c3e5x (ii)
(using (ii) -(i))
⇒ y′−y=2c2e3x+4c3e5x (iii)
Again differentiating w.r to x both sides
⇒ y′′−y′=6c2e3x+20c3e5x (iv)
using (iv)-3(iii) we get
y′′−4y′+3y=8c3e5x (v)
⇒ y′′′−4y′′+3y′=8×5c3e5x (vi)
using (vi)-5(v) we get
y′′′−9y′′+23y′−15y=0
or d3ydx3−9d2ydx2+23dydx−15y=0
=Ad3ydx3+Bd2ydx2+Cdydx+D
⇒ A=1, B=-9, C=23. D=-15
We obtained the following differential equation
d3ydx3−9d2ydx2+23dydx−15y=0
m1, m2, m3 are roots of the equation
m3−9m2+23m−15=0
∴ m1+m2+m3=9 & m1m2m3=15
∴ (m1+m2+m3,m1m2m3)=(9,15)