The value of sin16°+cos16° is
132cos1°+sin1°
12cos1°+3sin1°
13cos1°+2sin1°
123cos1°+sin1°
Explanation for the correct option:
Find the value of the expression:
sinA+B=sinAcosB+cosBsinAcosA+B=cosAcosB-sinAsinB
Use the above formula in the sin16°+cos16°
sin16°+cos16°=sin15°+1°+cos15°+1°=sin15°cos1°+cos15°sin1°+cos15°cos1°-sin15°sin1°=sin1°cos15°-sin15°+cos1°sin15°+cos15°...1
Now,
cos15°=cos45°-30°=cos45°cos30°+sin45°sin30°[∵cos(A-B)=cosAcosB-sinAsinB]=12·32+12·12[∵sin45°=cos45°=12,sin30°=12,cos30°=32]=3+122
And
sin15°=sin45°-30°=sin45°cos30°-cos45°sin30°[∵sinA-B=sinAcosB-cosAsinB]=12·32-12·12[∵sin45°=cos45°=12,sin30°=12,cos30°=32]=3-122
Substitute the value of cos15° and sin15° in the equation 1, we get
⇒sin16°+cos16°=sin1°3+122-3-122+cos1°3-122+3+122=sin1°3+1-3+122+cos1°3-1+3+122=sin1°222+cos1°2322=12sin1°+32cos1°=12sin1°+3cos1°
Hence, the correct option is D.