The correct option is D −257
Let α=2cot−12+cos−135
We know that cot−1x=tan−11x for x>0
and 2tan−1x=tan−1(2x1−x2) for |x|<1
∴α=2tan−112+tan−143
=tan−1⎛⎜
⎜
⎜
⎜
⎜⎝2×121−(12)2⎞⎟
⎟
⎟
⎟
⎟⎠+tan−143
⇒α=2tan−143
⇒α2=tan−143
⇒tan(α2)=43
Now, secα=1+tan2(α2)1−tan2(α2)
=1+(16/9)1−(16/9)=−257