The correct option is C cos−18485
We have,
sin−135−sin−1817
=cos−145−cos−11517
{∵sin−135=cos−145,sin−1817=cos−11517}
Using the formula:
{cos−1x−cos−1y=cos−1{xy+√1−x2√1−y2}, x≥0,y≥0,x≤y}
=cos−1⎧⎨⎩45×1517+√1−(45)2×√1−(1517)2⎫⎬⎭
=cos−1{45×1517+35×817}
=cos−1{6085+2485}
=cos−18485