The value of tancos-1-27-π2 is
235
23
15
45
The explanation for the correct option
The given trigonometric expression: tancos-1-27-π2.
tancos-1-27-π2=tanπ-cos-127-π2∵cos-1-θ=π-cos-1θ⇒tancos-1-27-π2=tanπ2-cos-127tancos-1-27-π2=tansin-127∵sin-1θ+cos-1θ=π2
Let us assume that sin-127=y
⇒siny=27⇒sin2y=272⇒1-cos2y=449⇒cos2y=1-449⇒cos2y=4549⇒cosy=4549⇒cosy=357
Thus, tany=sinycosy
⇒tany=27357⇒tany=235⇒tansin-127=235∵sin-127=y
Therefore, tancos-1-27-π2=235.
Hence, option A is correct.