The value of the limx→0x+2sinxx2+2sinx+1−x−sin2x+1is
Finding the value of limx→0x+2sinxx2+2sinx+1−x−sin2x+1:
Calculate the limit:
limx→0x+2sinxx2+2sinx+1−x−sin2x+1=limx→0(x+2sinx)x2+2sinx+1+x+cos2xx2+2sinx+1−x+cos2x=limx→0x+2sinxx2+2sinx+1+x+cos2xx2+2sinx+1+1−x+sin2x−1=limx→0x+2sinxx2+2sinx+1+x+cos2xx2−x+2sinx+sin2x=limx→0x+2sinxxlimx→0x2+2sinx+1+x+cos2xlimx→0x2+2sinxx+sinx×sinxx=1+21+10−1+2+0=6
Therefore, the value of limx→0x+2sinxx2+2sinx+1−x−sin2x+1is 6