wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the limx0x+2sinxx2+2sinx+1xsin2x+1is


Open in App
Solution

Finding the value of limx0x+2sinxx2+2sinx+1xsin2x+1:

Calculate the limit:

limx0x+2sinxx2+2sinx+1xsin2x+1=limx0(x+2sinx)x2+2sinx+1+x+cos2xx2+2sinx+1x+cos2x=limx0x+2sinxx2+2sinx+1+x+cos2xx2+2sinx+1+1x+sin2x1=limx0x+2sinxx2+2sinx+1+x+cos2xx2x+2sinx+sin2x=limx0x+2sinxxlimx0x2+2sinx+1+x+cos2xlimx0x2+2sinxx+sinx×sinxx=1+21+101+2+0=6

Therefore, the value of limx0x+2sinxx2+2sinx+1xsin2x+1is 6


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon