The correct option is C 58
1+4+7+10+....+x=590
This is an AP with first term 1,common difference 3. Let x be the nth term of the AP. Therefore, sum of n terms of AP is 590.
Sn=590⇒n2(2a+(n−1)d]=590⇒n2(2×1+(n−1)×3]=590⇒n2(2+3n−3]=590⇒3n2−n−1180=0⇒3n2−60n+59n−1180=0⇒(3n+59)(n−20)=0⇒n=−593 (Not Possible) or n=20∴ x is 20th term of the AP.a20=x⇒1+(20−1)3=x⇒x=58