The correct option is D 8
Given:
log10x2−7x−6=1−log105
For the log to be defined,
x2−7x−6>0
So, the roots of equation
x2−7x−6=0⇒x=7±√732
So,
x∈(−∞,7−√732)∪(7+√732,∞) ⋯(1)
Now,
log10x2−7x−6=1−log105⇒log10x2−7x−6+log105=1⇒log105(x2−7x−6)=1⇒5(x2−7x−6)=10
⇒x2−7x−6=2
⇒x2−7x−8=0
⇒x2−8x+x−8=0
⇒(x+1)(x−8)=0
⇒x=−1,8
From equation (1), both values are accepted
∴x=−1,8