The value(s) of ∫10x4(1−x)41+x2dx is/are?
Expanding the numerator: x4(1−x)4=x8−4x7+6x6−4x5+x4
Dividing this by 1+x2 by factorizing the terms and getting the reminder:
x4(1−x)41+x2=x6−4x5+5x4−4x2+4−41+x2
⟹I=∫10x4(1−x)41+x2=∫10(x6−4x5+5x4−4x2+4−41+x2)
I=1/7−4/6+5/5−4/3+4/1−∫1041+x2
I=1/7+3−4tan−11+4tan−10
I=227−π