Step:1 Find the rest mass energy of the electron.
Formula used: Rest mass energy =m0c2
Wavelength of a proton or a neutron,
λ≈10−15m
Planck's constant, h=6.6×10−34Js
Speed of light, c=3×108m/s
Rest mass energy of an electron:
m0c2=0.511MeV
=0.511×106×.16×10−19
=8.176×10−14J
Step:2 Find the momentum of proton or neutron.
Formula used: λ=hp
The momentum of a proton or a neutron is given as:
p=hλ=6.6×10−3410−15=6.6×10−19kg m/s
Step:3 Apply relativistic formula to find energy.
Formula used: E=√p2c2+m20c4
The relativistic relation for energy (E) is given as:
E=√p2c2+m20c4
Substituting the values, we get
=√(6.6×10−19×3×108)2+(8.176×10−14)2
=√3.9204×10−20+6.685×10−27
=√3.92×10−20
=1.98×10−10J
=1.98×10−101.6×10−19eV
E=1.24×109eV
E=1.24BeV
Thus, the electron energy emitted from the accelerator at Stanford. USA might be of the order of few BeV.