4√−64a4=√±8a2√−1 2a√2√±√−1 It remains to find the value of √±√−1 Assume √±√−1=x+y√−1 then ±√−1=x2−y2+2xy√−1
∴x2−y2=0 and 2xy=±1 whence x=1√2,y=1√2 or x=−1√2,y=−1√2 ∴√+√−1=±1√2(1+√−1) Similarly √−√−1=±1√2(1−√−1) ∴√±√−1=±1√2(1±√−1) and finally 4√−64a4=±2a(1±√−1)