The correct option is
A 3k+1+(−1)kA2=⎡⎢⎣120210001⎤⎥⎦⎡⎢⎣120210001⎤⎥⎦=⎡⎢⎣(1×1+2×2+0×0)(1×2+2×1+0×0)0(1×2+2×1+0×0)(2×2+1×1+0×0)0001⎤⎥⎦A3=⎡⎢
⎢⎣(12+22)(1×2+2×1)0(1×2+2×1)(12+22)0001⎤⎥
⎥⎦⎡⎢⎣120210001⎤⎥⎦=⎡⎢⎣1314014130001⎤⎥⎦Trace(A2)=11,Trace(A3)=27Tr=27;Trace(A4)=833k+1+(−1)k gives
k=2⇒32+1+1=11k=3⇒33+1−1=27k=4⇒34+1+1=83