xy=a(x+y)xy−ax−ay=0a=0,b=0,c=0,h=12,f=−a2,g=−a2Δ=abc+2fgh−af2−bg2−ch2Δ=0+2×12×−a2×−a2−0−0−0=a24Δ≠0h2=14,ab=0h2>ab
So the equation represents a hyperbola
∂∂x(xy−ax−ay=0)y−a=0.......(i)∂∂x(xy−ax−ay=0)x−a=0.....(ii)
Solvingg (i) and (ii) we get the centre of the conic centred at the origin
C:(a,a)
Making the conic central by using the centre
xy=cc=ax+ayc=a×a+a×a=2a2xy=2a2
which represents a standard hyperbola.