xy−y2=a2xy−y2−a2=0a=0,b=−1,c=−a2,h=12,f=0,g=0Δ=abc+2fgh−af2−bg2−ch2Δ=0+0−0−0−(−a2)14=a24Δ≠0h2=14,ab=0h2>ab
So the conic is a hyperbola
tan2θ=2ha−btan2θ=10−(−1)=12tanθ1−tan2θ=1tan2θ+2tanθ−1=0tanθ=−2±√4+42=−1±√2
So the axes of hyperbola are located at tanθ1=−1+√2 and tanθ2=−1−√2
converting the equation of hyperbola in polar form
x=rcosθ,y=rsinθr2(sinθcosθ−sin2θ)=a2(sin2θ+cos2θ)r2=a2(sin2θ+cos2θ)sinθcosθ−sin2θr2=a2tan2θ+a2tanθ−tan2θ=a2tan2θ+1tanθ−tan2θtanθ2=−1+√2r12=a2(−1+√2)2+1−1+√2−(−1+√2)2=a24−2√2−4+3√2⇒r1=a√4−2√2−4+3√2r22=a2(−1−√2)2+1−1+√2−(−1−√2)2=a24+2√2−4−√2r2=a√4+2√2−4−√2
So the magnitude of axes is given by r1 and r2