Two lines L1:x=5,y3−α=z−2 and L2:x=α,y−1=z2−α are coplanar. Then, α can take value(s)
4
If two straight lines are coplanar,
i.e. x−x1a1=y−y1b1=z−z1c1 and x−x2a2=y−y2b2=z−z2c2 are coplanar
Then, (x2−x1,y2−y1,z2−z1),(a1,b2,c1) and (a2,b2,c2) are coplanar,
i.e.∣∣
∣∣x2−x1y2−y1z2−z1a1b2c3a2b2c2∣∣
∣∣
Here,
x=5,y3−α=z−2⇒x−50=y−0−(α−3)=z−0−2...(i)and x=α,y−1=z2−α⇒x−α0=y−0−1=z−02−α...(ii)⇒∣∣
∣∣5−α0003−α−20−12−α∣∣
∣∣=0⇒(5−α)[(3−α)(2−α)−2]=0⇒(5−α)[α2−5α+4]=0⇒(5−α)(α−1)(α−4)=0∴ α=1,4,5