If u=log(x3+y3+z3−3xyz) then (x+y+z)(ux+uy+uz)=
Given:
u=log(x3+y3+z3−3xyz)
Differentiate with respect to 'x'
dudx=ddx(log(x3+y3+z3−3xyz)
[Since, ddx(logx)=1x,x>0,ddx(xn)=nxn−1 and ddx(constant)=0]
⇒dudx=3x2+0+0−3yzx3+y3+z3−3xyz
⇒dudx=3x2−3yzx3+y3+z3−3xyz
i.e., ux=dudx=3x2−3yzx3+y3+z3−3xyz..........(1)
Similarly,
=3x2−3yzx3+y3+z3−3xyz+3y2−3xzx3+y3+z3−3xyz+3z2−3xyx3+y3+z3−3xyz
=3(x2+y2+z2−xy−yz−zx)(x+y+z)(x2+y2+z2−xy−yz−zx)
[Since, a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)]
⇒ux+uy+uz=3x+y+z
Now, (x+y+z)(ux+uy+uz)
=(x+y+z)(3x+y+z)
=3
Hence, Option A is correct.