Given: (101)4=(100+1)4
We know that (a+b)n=nC0an+nC1an−1b+...+nCn−1abn−1+nCnbn
Putting a=100,b=1,n=4
(100+1)4=4C0(100)4+4C1(100)3(1)+4C2(100)2(1)2+4C3(100)(1)3+4C4(1)4
(100+1)4=(1)(100000000)+4(1000000)(1)+4×32(10000)+4(100)+1
(100+1)4=100000000+4000000+60000+400+1
(100+1)4=104060401
Hence, (101)4=104060401