The correct option is D (n+2)⋅2n−1
Let Sn=C0+2C1+3C2+4C3+…+(n+1)Cn
=n∑r=0(r+1)Cr=n∑r=0r Cr+n∑r=0Cr=n∑r=1r Cr+n∑r=0Cr=nn∑r=1 n−1Cr−1++n∑r=0 nCr=n⋅2n−1+2n=(n+2)⋅2n−1
Alternate solution:
(1+x)n=C0+C1x+C2x2+C3x3+…+Cnxn
x(1+x)n=C0x+C1x2+C2x3+C3x4+…+Cnxn+1
Differentiating w.r.t. x on both sides, we get
xn(1+x)n−1+(1+x)n=C0+2C1x+3C2x2+4C3x3+…+(n+1)Cnxn
By putting x=1, we get
C0+2C1+3C2+4C3+…+(n+1)Cn=n⋅2n−1+2n=(n+2)⋅2n−1