Value of i1947+i(−1947) is
0
48641947 16–––2 34 32––– 27 24––– 3
i1947 = i((4×486)+3) = (i4)486 × i3
= i3 = -i
i(−1947) = 1i3 = 1(−i) = i
∴ Answer is −i+i=0
Short cut: consider only last 2 digits of exponent.
The remainder of this number when divided by 4 will be the exponent
ie, i1947 = iR : R=remander of(474)=3
= i3 = -i
i(−1947) = 1i3 = 1(−i) = i
∴ Answer is −i+i=0