The correct option is C (n2+1)(2nCn)
Let S=C20+C21+C22+.....nC2n−1+(n+1)C2n......(1)
using Cr=Cn−r, we write (1) in the reverse order to obtain
S=(n+1)C20+C21+....2C2n−1+C2n......(2)
Adding (1) and (2), we get
2S=(n+2)[C20+C21+......+C2n]=(n+2)(2nCn)
⇒S=(n2+1)(2nCn)