Let A=[2346]
Here, |A|=∣∣∣2346∣∣∣
⇒|A|=12−12=0
|A|I=0.I=O .....(1)
Now, adjA=CT where C is the co-factor matrix
C11=(−1)1+16=6
C12=(−1)1+24=−4
C21=(−1)2+13=−3
C22=(−1)2+22=2
So, the co-factor matrix C is [6−4−32]
⇒adjA=CT=[6−3−42]
Now, A(adjA)=[2346][6−3−42]
⇒A(adjA)=[12−12−6+624−24−12+12]
⇒A(adjA)=O ....(2)
Now, (adjA)A=[6−3−42][2346]
⇒(adjA)A=[12−1218−18−8+8−12+12]
⇒(adjA)A=O .....(3)
From (1), (2) and (3), we have
A(adjA)=(adjA)A=|A|I
Hence, verified.