(i) The given sets are
A={4,5,6}, B={5,6,7,8} and C={6,7,8,9}
Now we find the following:
A={4,5,6}⇒n(A)=3B={5,6,7,8}⇒n(B)=4C={6,7,8,9}⇒n(C)=4
A∩B={4,5,6}∩{5,6,7,8}={5,6}⇒n(A∩B)=2B∩C={5,6,7,8}∩{6,7,8,9}={6,7,8}⇒n(B∩C)=3A∩C={4,5,6}∩{6,7,8,9}={6}⇒n(A∩C)=1
A∩B∩C={4,5,6}∩{5,6,7,8}∩{6,7,8,9}={6}⇒n(A∩B∩C)=1A∪B∪C={4,5,6}∪{5,6,7,8}∪{6,7,8,9}={4,5,6,7,8,9}⇒n(A∪B∪C)=6
Now consider
n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(B∩C)−n(A∩C)+n(A∩B∩C)⇒6=3+4+4−2−3−1+1⇒6=3+4+4+1−(2+3+1)⇒6=12−6⇒6=6
which is true.
Hence, n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(B∩C)−n(A∩C)+n(A∩B∩C)
(ii) The given sets are A={a,b,c,d,e}, B={x,y,z} and C={a,e,x}
Now we find the following:
A={a,b,c,d,e}⇒n(A)=5B={x,y,z}⇒n(B)=3C={a,e,x}⇒n(C)=3
A∩B={a,b,c,d,e}∩{x,y,z}={ϕ}⇒n(A∩B)=0B∩C={x,y,z}∩{a,e,x}={x}⇒n(B∩C)=1A∩C={a,b,c,d,e}∩{a,e,x}={a,e}⇒n(A∩C)=2
A∩B∩C={a,b,c,d,e}∩{x,y,z}∩{a,e,x}={ϕ}⇒n(A∩B∩C)=0A∪B∪C={a,b,c,d,e}∪{x,y,z}∪{a,e,x}={a,b,c,d,e,x,y,z}⇒n(A∪B∪C)=8
Now consider
n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(B∩C)−n(A∩C)+n(A∩B∩C)⇒8=5+3+3−0−1−2+0⇒8=5+3+3+0−(0+1+2)⇒8=11−3⇒8=8
which is true.
Hence, n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(B∩C)−n(A∩C)+n(A∩B∩C)