(i) Let point(0,7,−10),(1,6,−6) and (4,9,−6) be denoted by A,B and C respectively
AB=√(1−0)2+(6−7)2+(−6+10)2
=√(1)2+(−1)2+(4)2
=√1+1+16
=√18
⇒AB=3√2
BC=√(4−1)2+(9−6)2+(−6+6)2
=√(3)2+(3)2
=√9+9=√18
⇒BC=3√2
CA=√(0−4)2+(7−9)2+(−10+6)2
=√(−4)2+(−2)2+(−4)2
=√16+4+16=√36=6
Here AB=BC ≠ CA
Thus the given points are the vertices of an isosceles triangle
(ii) Let (0,7,10),(−1,6,6) and (−4,9,6) be denoted by A,B and C respectively
AB=√(−1−0)2+(6−7)2+(6−10)2
=√(−1)2+(−1)2+(−4)2
=√1+1+16=√18
=3√2
BC=√(−4+1)2+(9−6)2+(6−6)2
=√(−3)2+(3)2+(0)2
=√9+9=√18
=3√2
CA=√(0+4)2+(7−9)2+(10−6)2
=√(4)2+(−2)2+(4)2
=√16+4+16
=√36
=6
Now AB2+BC2=(3√2)2+(3√2)2=18+18=36=AC2
Therefore by pythagoras theorem ABC is a right triangle
Hence the given points are the vertices of a right-angled triangle
(iii) Let (−1,2,1),(1,−2,5),(4,−7,8) and (2,−3,4) be denoted by A,B,C and D respectively
AB=√(1+1)2+(−2−2)2+(5−1)2
=√4+16+16
AB=√36
AB=6
BC=√(4−1)2+(−7+2)2+(8−5)2
=√9+25+9=√43
CD=√(2−4)2+(−3+7)2+(4−8)2
=√4+16+16
=√36
CD=6
DA=√(−1−2)2+(2+3)2+(1−4)2
DA=√9+25+9=√43
Here AB=CD=6, BC=AD=√43
Hence the opposite sides of quadrilateral ABCD whose vertices are taken in order are equal
Therefore ABCD is a parallelogram
Hence the given points are the vertices of a parallelogram