What is (a3−b3) if ab=6 and (a+b)=5 and a>b?
19
Given ab=6 and (a+b)=5
⇒(a−b)3=a3−b3−3ab(a−b)
We need to find (a - b)
⇒(a−b)2=a2+b2−2ab
⇒(a−b)2=a2+b2−2(6)
⇒(a−b)2=a2+b2−12
Now we need to find (a2+b2)
⇒(a+b)2=a2+b2+2ab
⇒(5)2=a2+b2+2(6)
⇒25=a2+b2+12
⇒(a2+b2)=25−12=13
Substituting this value in (a−b)2=a2+b2−12, we get
(a−b)2=13−12=1
(a−b)=±1
⇒(a−b)=1 ∵Given(a>b)
Now substituting (a - b) = 1
⇒(a−b)3=a3−b3−3ab(a−b)
⇒(1)3=(a3−b3)−3(6)(1)
⇒1=(a3−b3)−18
⇒(a3−b3)=18+1=19