Consider the given function
y=(1x)x
Taking log both side and we get,
logy=log(1x)x
logy=xlog(1x)
On differentiation this equation with respect to x and we get,
ddxlogy=ddx(x.log(1x))
ddxlogy=x.ddxlog(1x)+log(1x)ddxx
1ydydx=x.ddx(logx)−1+log(1x)ddxx
1ydydx=−xddxlogx+log(1x)ddxx
1ydydx=−x1x+log(1x)
dydx=y(−1+log(1x))
dydx=y(log(1x)−1)
dydx=(1x)x(log(1x)−1)
Hence, this is the answer.