What is the formula of a2+b2+c2 ?
Derive the required formula
a+b+c2=a+b+ca+b+c
=a2+ab+ac+ba+b2+bc+ca+cb+c2
⇒ a+b+c2=a2+b2+c2+2ab+2bc+2ca
⇒ a2+b2+c2=a+b+c2-2ab+bc+ca
Hence the formula of a2+b2+c2 is (a+b+c)2-2(ab+bc+ca).
If a + b + c = 2s, then prove the following identities
(a) s2 + (s − a)2 + (s − b)2 + (s − c)2 = a2 + b2 + c2
(b) a2 + b2 − c2 + 2ab = 4s (s − c)
(c) c2 + a2 − b2 + 2ca = 4s (s − b)
(d) a2 − b2 − c2 + 2ab = 4(s − b) (s − c)
(e) (2bc + a2 − b2 − c2) (2bc − a2 + b2 + c2) = 16s (s − a) (s − b) (s − c)
(f)