wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

What is the integral of sec3x?


Open in App
Solution

Find the integral of sec3x.

sec3xdx=secxsec2xdx

From integration by parts: uvdx=uvdx-(vdx)dudxdx

Let. u=secx,v=sec2x.

To find integral of sec3x, Put u=secx,v=sec2x in uvdx=uvdx-vdxdudxdx

secx.sec2xdx=secxtanx-tanxsecxtanxdxsec2xdx=tanx,ddxsecx=tanxsecxsec3xdx=secxtanx-tan2xsecxdxsec3xdx=secxtanx-sec2x-1secxdxsec2x-tan2x=1sec3xdx=secxtanx-sec3x-secxdxsec3xdx=secxtanx-sec3xdx+secxdx2sec3xdx=secxtanx+lnsecx+tanx+Csecxdx=ln|secx+tanx|

sec3xdx=12[secxtanx+lnsecx+tanx]+C

Hence, the required integral is sec3xdx=12[secxtanx+lnsecx+tanx]+C


flag
Suggest Corrections
thumbs-up
53
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon