What is the integral of sec3x?
Find the integral of sec3x.
∫sec3xdx=∫secxsec2xdx
From integration by parts: ∫uvdx=u∫vdx-∫(∫vdx)dudxdx
Let. u=secx,v=sec2x.
To find integral of sec3x, Put u=secx,v=sec2x in ∫uvdx=u∫vdx-∫∫vdxdudxdx
∫secx.sec2xdx=secxtanx-∫tanxsecxtanxdx∵∫sec2xdx=tanx,ddxsecx=tanxsecx⇒∫sec3xdx=secxtanx-∫tan2xsecxdx⇒∫sec3xdx=secxtanx-∫sec2x-1secxdx∵sec2x-tan2x=1⇒∫sec3xdx=secxtanx-∫sec3x-secxdx⇒∫sec3xdx=secxtanx-∫sec3xdx+∫secxdx⇒2∫sec3xdx=secxtanx+lnsecx+tanx+C∵∫secxdx=ln|secx+tanx|
⇒∫sec3xdx=12[secxtanx+lnsecx+tanx]+C
Hence, the required integral is ∫sec3xdx=12[secxtanx+lnsecx+tanx]+C
What is the geometrical interpretation of indefinite integral?
What is integral of (ax+b)/(cx+d)