what is the proof of the theorem:
[x]+[x+1/n]+[x+2/n]+…….+[x+(n-2)/n]+[x+(n-2)/n][x+(n-1)/n]=[nx]
Proof of the theorem [x]+[x+1/n]+[x+2/n]+…….+[x+(n-2)/n]+[x+(n-2)/n][x+(n-1)/n]=[nx]
Since, the greatest integer is defined as follow:
[m+(p/q)]=m
Where mis an integer value.
(p/q)is the fractional value less than 1
Now,
[x]+[x+1/n]+[x+2/n]+…….+[x+(n-2)/n]+[x+(n-2)/n][x+(n-1)/n]=x+x+x....ntimes⇒[x]+[x+1/n]+[x+2/n]+…….+[x+(n-2)/n]+[x+(n-2)/n][x+(n-1)/n]=n*x
∴[x]+[x+1/n]+[x+2/n]+…….+[x+(n-2)/n]+[x+(n-2)/n][x+(n-1)/n]=[nx] is proved
Hence, The theorem is proved.