wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

When 4101+6101 is divided by 25, the remainder is:


  1. 20

  2. 10

  3. 5

  4. 0

Open in App
Solution

The correct option is B

10


Step 1: Use binomial expansion formula

4101=(5-1)101[(x-1)n=C0nxn-C1nxn-1+...-Cnnx0]=C01015101-C11015100+...-C10110150

Now,

6101=(5+1)101[(x+1)n=C0nxn+C1nxn-1+...+Cnnx0]=C01015101+C11015100+...+C10110150

Step 2: Find remainder when 4101+6101 is divided by 25

4101+6101=2C01015101+C2101599+...+C9810153+C10010151[Aftersubstractingliketerms]=2×52C0101599+C2101597+...+C9810151+2×C10010151=252C0101599+C2101597+...+C9810151+2×101×5=25K+1010

Where, k=C0101599+C2101597+...+C9810151

Again,

4101+6101=25K+25×40+10=25M+10

Where, M=K+40

Therefore, the remainder will be10.

The correct answer is option (B).


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cube Root of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon