When 4101+6101 is divided by 25, the remainder is:
20
10
5
0
Step 1: Use binomial expansion formula
4101=(5-1)101[∵(x-1)n=C0nxn-C1nxn-1+...-Cnnx0]=C01015101-C11015100+...-C10110150
Now,
6101=(5+1)101[∵(x+1)n=C0nxn+C1nxn-1+...+Cnnx0]=C01015101+C11015100+...+C10110150
Step 2: Find remainder when 4101+6101 is divided by 25
4101+6101=2C01015101+C2101599+...+C9810153+C10010151[Aftersubstractingliketerms]=2×52C0101599+C2101597+...+C9810151+2×C10010151=252C0101599+C2101597+...+C9810151+2×101×5=25K+1010
Where, k=C0101599+C2101597+...+C9810151
Again,
4101+6101=25K+25×40+10=25M+10
Where, M=K+40
Therefore, the remainder will be10.
The correct answer is option (B).
The remainder when 7103 is divided by 25 is:
When a number is divided by 125,the remainder is 82. When the same number is divided by 25, the remainder will be_______