The correct option is C e∫1/edxx(lnx)1/3
(i) I=π/2∫0ln(cotx)dx⇒I=π/2∫0ln(tanx)dxAdding both⇒2I=π/2∫0ln(cotx⋅tanx)dx⇒I=0(ii) I=2π∫0sin3xdx=−2π∫0sin3xdx⇒I=0
(iii) At x=1t,
I=1/e∫e−(1t2)dt−1t(lnt)1/3=−e∫1/edtt(lnt)1/3⇒I=−I⇒I=0
(iv) √1+cos2x2>0⇒π∫0√1+cos2x2dx>0