The correct option is C (∼ q∧p)∨(p ∨∼ p)
(∼ q∧p)∧q
Using Set Theory approach,
(Qc∩P)∩Q=ϕ
(∼ q∧p)∧q is not a tautology.
(∼ q∧p)∧(p ∧∼ p)
(p ∧∼ p) is always false.
(∼ q∧p)∧F=F
(∼ q∧p)∧(p ∧∼ p) is not a tautology.
(∼ q∧p)∨(p ∨∼ p)
(p ∨∼ p)=T
(∼ q∧p)∨T=T
(∼ q∧p)∨(p ∨∼ p) is a tautology.
(p∧q)∧(∼ (p∧q)) can be expressed as a ∧∼a, which is always false, where a=p∧q.
Therefore, (p∧q)∧(∼ (p∧q)) is not a tautology.