Which term of the G.P. :
(i) √2,1√2,12√2,14√2,....is1512√2 ?
(ii) 2, 2√2,4,....is128 ?
(iii) √3,3,3√3,.....is729 ?
(iv) 13,19,127...is119683 ?
(i) √2,1√2,12√2,14√2,... is 1512√2
tn=arn−1
a=√2,r=tntn−1=t2t1=1√2√2=12
tn=1512√2,n=?
tn=arn−1
⇒1512√2=(√2)(12)n−1
⇒1512×√2×√2=(12)n−1
⇒11024=(12)n−1
⇒(12)10=(12)n−1
⇒10=(n−1)
⇒n=11
Thus, the 11th term of the given G.P. is 1512√2.
(ii) 2,√2,4,....is 128
a=2, r=tntn−1=2√22=√2, n=?
tn=128
Also,
⇒tn=arn−1
⇒128=(2)(√2)n−1
⇒1282=(√2)n−1
⇒64=(√2)n−1
⇒(√2)12=(√2)n−1
⇒12=n−1
⇒n=13
Thus, the 13th term of the given G.P. is 128.
(iii) √3,3,3√3,....729
a=√3, r=tntn−1=3√3=√3,n=?,
tn=729
Now,
tn=arn−1
729=(√3)(r)n−1
Now,
⇒729=(√3)(√3)n−1
⇒729=(√3)n
⇒(3)6=(√3)n
⇒(√3)12=(√3)n
⇒n=12
Thus, the 12th term of the given G.P. is 729.
(iv) 13,19,127....119683
a=13,r=tntn−1=t2t1=1913=13, tn=119683,
n = ?
Now,
tn=arn−1
⇒119683=(13)(13)n−1=(13)n
⇒(13)9=(13)n
⇒n=9
Thus 9th term of the given G.P is 119683.