1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Compound Angles
Without using...
Question
Without using trigonometric tables, prove that:
(i) sin53° cos37° + cos53° sin37° = 1
(ii) cos54° cos36° − sin54° sin36° = 0
(iii) sec70° sin20° + cos20° cosec70° = 2
(iv) tan 15° tan 60° tan 75° =
3
(v) tan48° tan23° tan42° tan67° tan 45° = 1
(vi) (sin72° + cos18°)(sin72° − cos18°) = 0
(vii) cosec 39° cos 51° + tan 21° cot 69° – sec
2
21° = 0
Open in App
Solution
(
i
)
LHS
=
sin
53
0
cos
37
0
+
cos
53
0
sin
37
0
=
sin
(
90
0
−
37
0
)
cos
37
0
+
cos
(
90
0
−
37
0
)
sin
37
0
=
cos
37
0
cos
37
0
+
sin
37
0
sin
37
0
=
cos
2
37
0
+
sin
2
37
0
=
1
=
RHS
(
ii
)
LHS
=
cos
54
0
cos
36
0
−
sin
54
0
sin
36
0
=
cos
(
90
0
−
36
0
)
cos
36
0
−
sin
(
90
0
−
36
0
)
sin
36
0
=
sin
36
0
cos
36
0
−
cos
36
0
sin
36
0
=
0
=
RHS
(
iii
)
LHS
=
sec
70
0
sin
20
0
+
cos
20
0
cosec
70
0
=
sec
(
90
0
−
20
0
)
sin
20
0
+
cos
20
0
cosec
(
90
0
−
20
0
)
=
cosec
20
0
.
1
cosec
20
0
+
1
sec
20
0
.
sec
20
0
=
1
+
1
=
2
=
RHS
(iv) To prove: tan15° tan60° tan75° =
3
tan
15
°
tan
60
°
tan
75
°
=
tan
15
°
tan
60
°
tan
90
°
-
15
°
=
tan
15
°
tan
60
°
cot
15
°
∵
tan
90
°
-
θ
=
cot
θ
=
tan
15
°
tan
60
°
1
tan
15
°
∵
cot
θ
=
1
tan
θ
=
tan
60
°
=
3
∵
tan
60
°
=
3
Hence
,
tan
15
°
tan
60
°
tan
75
°
=
3
.
v
LHS
=
tan
48
°
tan
23
°
tan
42
°
tan
67
°
=
cot
90
°
-
48
°
cot
90
°
-
23
°
tan
42
°
tan
67
°
=
cot
42
°
cot
67
°
tan
42
°
tan
67
°
=
1
tan
42
°
×
1
tan
67
°
×
tan
42
°
×
tan
67
°
=
1
=
RHS
vi
LHS
=
sin
72
°
+
cos
18
°
sin
72
°
-
cos
18
°
=
sin
72
°
+
cos
18
°
cos
90
°
-
72
°
-
cos
18
°
=
sin
72
°
+
cos
18
°
cos
18
°
-
cos
18
°
=
sin
72
°
+
cos
18
°
0
=
0
=
RHS
(vii) To prove: cosec39° cos51° + tan21° cot69° – sec
2
21° = 0
cosec
39
°
cos
51
°
+
tan
21
°
cot
69
°
-
sec
2
21
°
=
cosec
90
°
-
51
°
cos
51
°
+
tan
21
°
cot
90
°
-
21
°
-
sec
2
21
°
=
sec
51
°
cos
51
°
+
tan
21
°
tan
21
°
-
sec
2
21
°
∵
cot
90
°
-
θ
=
tan
θ
and
cosec
90
°
-
θ
=
sec
θ
=
sec
51
°
cos
51
°
+
tan
2
21
°
-
sec
2
21
°
=
sec
51
°
cos
51
°
-
sec
2
21
°
-
tan
2
21
°
using
the
identity
:
sec
2
θ
-
tan
2
θ
=
1
=
sec
51
°
cos
51
°
-
1
=
1
cos
51
°
cos
51
°
-
1
∵
sec
θ
=
1
cos
θ
=
1
-
1
=
0
Hence
,
cosec
39
°
cos
51
°
+
tan
21
°
cot
69
°
-
sec
2
21
°
=
0
.
Suggest Corrections
5
Similar questions
Q.
Without using trigonometric tables, prove that:
(i) sin53° cos37° + cos53° sin37° = 1
(ii) cos54° cos36° − sin54° sin36° = 0
(iii) sec70° sin20° + cos20° cosec70° = 2
(iv) sin35° sin55° − cos35° cos55° = 0
(v) (sin72° + cos18°)(sin72° − cos18°) = 0
(vi) tan48° tan23° tan42° tan67° = 1
Q.
Evaluate the following :
(i)
sin
49
°
cos
41
°
2
+
cos
41
°
sin
49
°
2
(ii) cos 48° − sin 42°
(iii)
cot
40
°
tan
50
°
-
1
2
cos
35
°
sin
55
°
(iv)
sin
27
°
cos
63
°
2
-
cos
63
°
sin
27
°
2
(v)
tan
35
°
cot
55
°
+
cot
78
°
tan
12
°
-
1
(vi)
sec
70
°
cosec
20
°
+
sin
59
°
cos
31
°
(vii) cosec 31° − sec 59°
(viii) (sin 72° + cos 18°) (sin 72° − cos 18°)
(ix) sin 35° sin 55° − cos 35° cos 55°
(x) tan 48° tan 23° tan 42° tan 67°
(xi) sec50° sin 40° + cos40° cosec 50°