wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Without using trigonometric tables, prove that:
(i) sin53° cos37° + cos53° sin37° = 1
(ii) cos54° cos36° − sin54° sin36° = 0
(iii) sec70° sin20° + cos20° cosec70° = 2
(iv) tan 15° tan 60° tan 75° = 3
(v) tan48° tan23° tan42° tan67° tan 45° = 1
(vi) (sin72° + cos18°)(sin72° − cos18°) = 0
(vii) cosec 39° cos 51° + tan 21° cot 69° – sec221° = 0

Open in App
Solution

(i) LHS=sin530cos370+cos530sin370 =sin (900370)cos370+cos(900370)sin370 =cos370cos370+sin370sin370 =cos2370+sin2370 =1=RHS(ii) LHS=cos540cos360sin540sin360 =cos(900360)cos360sin(900360)sin360 =sin360cos360cos360sin360 =0=RHS(iii) LHS=sec700sin200+cos200cosec700 =sec(900200)sin200+cos200cosec(900200) =cosec200.1cosec200+1sec200.sec200 =1+1 =2=RHS

(iv) To prove: tan15° tan60° tan75° = 3

tan15° tan60° tan75°=tan15° tan60° tan90°-15° =tan15° tan60° cot15° tan90°-θ=cotθ=tan15° tan60° 1tan15° cotθ=1tanθ=tan60°=3 tan60°=3Hence, tan15° tan60° tan75°=3.
v LHS=tan48° tan23° tan42° tan67°=cot90°-48° cot90°-23° tan42° tan67°=cot42° cot67° tan42° tan67°=1tan42°×1tan67°×tan42°×tan67°=1=RHS

vi LHS=sin72°+cos18°sin72°-cos18°=sin72°+cos18°cos90°-72°-cos18°=sin72°+cos18°cos18°-cos18°=sin72°+cos18°0=0=RHS
(vii) To prove: cosec39° cos51° + tan21° cot69° – sec221° = 0

cosec39° cos51° +tan21° cot69°-sec221°=cosec90°-51° cos51° +tan21° cot90°-21°-sec221° =sec51° cos51° +tan21° tan21°-sec221° cot90°-θ=tanθ and cosec90°-θ=secθ=sec51° cos51° +tan221°-sec221° =sec51° cos51° -sec221°-tan221° using the identity: sec2θ-tan2θ=1=sec51° cos51° -1=1cos51° cos51° -1 secθ=1cosθ=1-1=0Hence, cosec39° cos51° +tan21° cot69°-sec221°=0.

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon