Finding sequence and corresponding series
Given, a1=−1,an=an−1n,n≥2, n∈N
Substituting n=2,3,4 and 5 in an, we get
a2=a2−12
⇒a2=a12
⇒a2=−12
a3=a3−13
⇒a3=a23
⇒a3=−16
a4=a4−14
⇒a4=a34
⇒a4=−124
a5=a5−15
⇒a5=a45
⇒a5=−1120
Hence, the first five terms of sequence are −1,−12,−16,−124,−1120 and the corresponding series is (−1)+(−12)+(−16)+(−124)+(−1120)+⋯