wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(x3+x2+x+1)dydx=2x2+x;y=1 when x=0.

Open in App
Solution

Particulation solution
(x3+x2+x+1)dydx=2x2+xdy=2x2+xx3+x2+x+1dx
Integrating both sides w.r.t x
y=2x2+x(x+1)(x2+1)dx
x=1 as a solution of given eqn:x3+x2+x+1
as: (1)3+(1)2+(1)+1=0
(x+1) is a factor.
Now, we have to integrating using partial functions
2x2+x(x+1)(x2+1)=A(x+1)+Bx+cx+1=A(x2+1)(Bx+c)(x+1)(x+1)(x2+1)
2x2+x=A(x2+1)(Bx+c)(x+1)
Putting x=1
2(1)21=A((1)2+1)(B(1)+c)(1+1)
21=A(2)+(B+c)(0)
1=2A12
Putting x=1
2(1)+1=A(12+1)+(B(1)+c)(1+1)
3=2A+2B+2c
3=3×12+2B+2(12)
3=2B
B=32
Putting x=0
0=A(0+1)+(B(0)+c)(0+1)
0=A+c(1)A=cC=12
So, the partial equation become
2x2+x(x+1)(x2+1)=12(x+1)=32x12x2+1=12(x+1)+3x12(x2+1)
Now main equation become
y=2x2+x(x+1)(x2+1)dx
y=12(x+1)dx+3x2(x2+1)dx12(x2+1)dx
y=12log(x+1)+3x2(x1+1)dx12tan1x...(1)
Integrating 3x2(x2+1)dx
Put x1+1=z
2x=dzdx
dx=dzzx


3x2(x2+1)dx=32xzxdzzx=34dzz=34log|z|+cd
Substituting value of z we get,
3x2(x2+1)dx=34log(x2+1)+c
Now, from(1)
y=12log(x+1)+3x2(x2+1)dx12tan1x
y=12log(x+1)+34log(x2+1)12tan1+c
Put x=0 and y=1
1=12log(0+1)+34log(0+1)12tan1(0)+c
1=12log(1)+34log(1)12tan1+c
1=0+00+c
1=c (log1=0andtan=0)
Putting value of c in (1)
y=12log(x+1)+34log(x2+1)12tan1x+1
y=24log(x+1)+34log(x2+1)12tan1x+1
y=14log(x+1)2+14log(x2+1)312tan1x+1
(alogx=logxa)
y=12[log(X+1)2+log(X2+1)312tan1x+1
y=14log[(x+1)2(x2+1)3]12tan1x+1
(loga+logb=logab)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon