Particulation solution
(x3+x2+x+1)dydx=2x2+x⇒dy=2x2+xx3+x2+x+1dx
Integrating both sides w.r.t x
y=∫2x2+x(x+1)(x2+1)dx
x=−1 as a solution of given eqn:x3+x2+x+1
as: (−1)3+(−1)2+(−1)+1=0
∴(x+1) is a factor.
Now, we have to integrating using partial functions
∫2x2+x(x+1)(x2+1)=A(x+1)+Bx+cx+1=A(x2+1)(Bx+c)(x+1)(x+1)(x2+1)
⇒2x2+x=A(x2+1)(Bx+c)(x+1)
Putting x=−1
2(−1)2−1=A((−1)2+1)(B(−1)+c)(−1+1)
2−1=A(2)+(−B+c)(0)
1=2A⇒12
Putting x=1
2(1)+1=A(12+1)+(B(1)+c)(1+1)
3=2A+2B+2c
3=3×12+2B+2(−12)
3=2B
B=32
Putting x=0
0=A(0+1)+(B(0)+c)(0+1)
0=A+c(1)⇒A=−c⇒C=−12
So, the partial equation become
2x2+x(x+1)(x2+1)=12(x+1)=32x−12x2+1=12(x+1)+3x−12(x2+1)
Now main equation become
y=∫2x2+x(x+1)(x2+1)dx
y=∫12(x+1)dx+∫3x2(x2+1)dx−∫12(x2+1)dx
y=12log(x+1)+∫3x2(x1+1)dx−12tan−1x...(1)
Integrating ∫3x2(x2+1)dx
Put x1+1=z
2x=dzdx
⇒dx=dzzx
∫3x2(x2+1)dx=32∫xzxdzzx=∫34dzz=34log|z|+cd
Substituting value of z we get,
∫3x2(x2+1)dx=34log(x2+1)+c
Now, from(1)
y=12log(x+1)+∫3x2(x2+1)dx−12tan−1x
y=12log(x+1)+34log(x2+1)−−12tan−1+c
Put x=0 and y=1
1=12log(0+1)+34log(0+1)−12tan−1(0)+c
1=12log(1)+34log(1)−12tan−1+c
1=0+0−0+c
1=c (∴log1=0andtan=0)
Putting value of c in (1)
y=12log(x+1)+34log(x2+1)12tan−1x+1
y=24log(x+1)+34log(x2+1)−12tan−1x+1
y=14log(x+1)2+14log(x2+1)3−12tan−1x+1
∴ (alogx=logxa)
y=12[log(X+1)2+log(X2+1)3−12tan−1x+1
⇒y=14log[(x+1)2(x2+1)3]−12tan−1x+1
(∴loga+logb=logab)