As, x is in quadrant II,
π 2 <x<π π 4 < x 2 < π 2
Therefore, sin x 2 , cos x 2 and tan x 2 are all positive.
Form the question,
tanx=− 4 3
So,
sec 2 x=1+ tan 2 x =1+ ( − 4 3 ) 2 =1+ 16 9 = 25 9
Therefore,
cos 2 x= 9 25 cosx=± 3 5
As x is in quadrant II, cosx is negative.
cosx=− 3 5
Now, for cos x 2
cosx=2 cos 2 x 2 −1 − 3 5 = cos 2 x 2 −1 cos 2 x 2 = 1 5 cos x 2 = 1 5 ( ∵cos x 2 is positive )
For sin x 2 ,
sin 2 x 2 + cos 2 x 2 =1 sin 2 x 2 + ( 1 5 ) 2 =1 sin 2 x 2 = 4 5 ( ∵sin x 2 is positive ) sin x 2 = 2 5
For tan x 2 ,
tan x 2 = sin x 2 cos x 2 = 2 5 1 5 =2
Hence, the respective values of sin x 2 , cos x 2 and tan x 2 are 2 5 , 1 5 and 2.