xlog5x>5 implies that
x∈2,∞
x∈0,15∪5,∞
x∈1,∞
x∈1,5
Solve the given inequality:
Given inequality is
xlog5x>5
Applying log5on both sides
⇒ log5xlog5x>log55
⇒ log5x·log5x>1∵logcab=blogcaandlogaa=1
⇒ log5x2>1
⇒ log5x2-1>0
⇒ log5x+1log5x-1>0∵usingtheidentitya2-b2=a+ba-b
⇒ log5x<-1orlog5x>1
⇒ x<5-1orx>51
⇒ x<15orx>5
Also the condition x>0 must be satisfied.
So, x∈0,15∪5,∞
Hence, the correct option is B.
The passage implies that: