Consider the given equation
x=sint …….. (1) y=cosmt ……… (2)
By equation (1),
Given, x=sint then t=sin−1x put in equation (2)
We get, y=cos(msin−1x) …….. (3)
Differentiating equation (3) with respect to x and we get,
y1=dydx=−sin(msin−1x).m√1−x2
y1√1−x2=−msin(msin−1x)
Squaring both side,
y1√1−x2=−msin(msin−1x)
⇒(1−x2)y12=m2[sin(msin−1x)]2
⇒(1−x2)y12=m2[1−cos2(msin−1x)]
⇒(1−x2)y12=m2(1−y2)..........by(3)
Again, Differentiating with respect to x and we get,
(1−x2)2y1y2+y12(−2x)=m2(−2y)y1
⇒(1−x2)y2−xy1=−m2y
⇒(1−x2)y2−xy1+m2y=0
Differentiating this equation n times by Leibnitz rule,
(1−x2)yn+2+n(−2x)yn+1+n(n−1)2(−2)yn−xyn+1−nyn−m2yn=0
⇒(1−x2)yn+2−x(2n+1)yn+1+(−n2+n−n+m2)yn=0
⇒(1−x2)yn+2−x(2n+1)yn+1+(m2−n2)yn=0
Hence proved.