I = ∫(x2+1) (x2+4)(x2+3) (x2-5) dx Since, x2+1x2+4x2+3x2-5=x2+3-2x2-5+9x2+3x2-5⇒x2+1x2+4x2+3x2-5=x2+3x2-5+9x2+3-2x2-5-18x2+3x2-5 ⇒x2+1x2+4x2+3x2-5=1+9x2-5-2x2+3-18x2+3x2-5 ...(i)
Let I1=∫1(x2+3)(x2-5) and x2 = y ⇒1y+3y-5 =Ay+3+By-5 =Ay-5+By+3y+3y-5⇒1y+3y-5 =A+By-5A+3By+3y-5 Comparing coefficients, we get A+B=0 and 5A+3B=-1By solving the equations, we getA=-18 and B=18 From (i), we get I=∫1+9x2-5-2x2+3-18-18x2+3+18x2-5dx ⇒I=∫1+274x2-5+1x2+3dx⇒I=∫1dx+∫274x2-5dx+∫1x2+3dx∴ I=x+2785lnx-5x+5+143tan-1x3+c