wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xydydx=x2+2y2;y(1)=0

Open in App
Solution

Solution -
xydydx=x2+2y2
dydx=xy+2yx
Let y=vx
dydx=v+xdvdx
v+xdvdx=1v+2v
xdvdx=1v+v
vv2+1dv=dxx
put v2=t 2vdv=dt
12dtt+1=lnx+c
12lnv2+1=lnx+c
Put v=y/x
12lny2+x2x2=ln|x|+c
12lny2+x2ln|x|=ln|x|+c
y(1)=0
c=0
lny2+x2x4=0
y2+x2=x4
y=x4x2

1100676_1187928_ans_7a7574ea7f4b48aeb43ceab2a46c5e1d.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon