Solution -
xydydx=x2+2y2
dydx=xy+2yx
Let y=vx
dydx=v+xdvdx
v+xdvdx=1v+2v
xdvdx=1v+v
∫vv2+1dv=∫dxx
put v2=t 2vdv=dt
12dtt+1=lnx+c
12ln∣∣v2+1∣∣=lnx+c
Put v=y/x
12ln∣∣∣y2+x2x2∣∣∣=ln|x|+c
12ln∣∣y2+x∣∣2−ln|x|=ln|x|+c
y(1)=0
c=0
ln∣∣∣y2+x2x4∣∣∣=0
y2+x2=x4
y=√x4−x2