Consider the following differential eq.
y=2 xsinx−(sin−1x)2
y=u−v
Differentiate w.r.t x
dydx=dudx−dvdx..........(1)
let , u v and differntiate w.r.t x
u=xsinx
logu=xsinx
1ududx=cosxlogx+sinxx
dudx=(cosxlogx+sinx)xxsinx.....(2)
dvdy=2(sin−1x)1√1−x2........(3)
dydx=(cosxlogx+sinx)xxsinx−2(sin−1x)1√1−x2
Hence, this is the required answer