wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(y32x2y)dx+(2xy2x3)dy=0

Open in App
Solution

(y32x2y)dx+(2xy2x3)dy=0

dydx=y(y22x2)x(2y2x2)

dydx=yx(y2x222y2x21)

Putting y=vx

dydx=v+xdvdx

v+xdvdx=v[v222v21]

xdvdx=v3+2v2v21v

xdvdx=3v3+3v2v21

132v21v3vdv=dxx

2v21v(v+1)(v1)dv=3dxx

Let, 2v21v(v+1)(v1)=Av+Bv+1+Cv1

2v21=A(v+1)(v1)+Bv(v1)+Cv(v+1)

Put v=0 we get A=1

Put v=1 we get C=12

Put v=1 we get B=12

So, ⎜ ⎜ ⎜1v+12v+1+12v1⎟ ⎟ ⎟dv=3dxx

logv+12log|v+1|+12log|v1|=3logx+logC

logvv21=logCx3

vv21=Cx3

Put v=yx

We get, xyy2x2=C



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon