(y3−2x2y)dx+(2xy2−x3)dy=0
dydx=−y(y2−2x2)x(2y2−x2)
dydx=−yx(y2x2−22y2x2−1)
Putting y=vx
dydx=v+xdvdx
v+xdvdx=−v[v2−22v2−1]
xdvdx=−v3+2v2v2−1−v
xdvdx=−3v3+3v2v2−1
−13∫2v2−1v3−vdv=∫dxx
∫2v2−1v(v+1)(v−1)dv=−3∫dxx
Let, 2v2−1v(v+1)(v−1)=Av+Bv+1+Cv−1
2v2−1=A(v+1)(v−1)+Bv(v−1)+Cv(v+1)
Put v=0 we get A=1
Put v=1 we get C=12
Put v=−1 we get B=12
So, ∫⎛⎜ ⎜ ⎜⎝1v+12v+1+12v−1⎞⎟ ⎟ ⎟⎠dv=−3∫dxx
logv+12log|v+1|+12log|v−1|=−3logx+logC
logv√v2−1=logCx3
v√v2−1=Cx3
Put v=yx
We get, xy√y2−x2=C