We have,
y=cos−1(√1+x2)
Then dydx=?
Suppose that,
y=cos−1(√1+x2)
On differentiating with respect to x and we get,
dydx=ddxcos−1(√1+x2)
=−1 ⎷1−(√1+x2)2ddx(√1+x2)∵ddx√x=12√x
=−1√1−1+x212√1+x2ddx(1+x2)
=−12√2−1−x21√1+x2ddx(1+x2)
=−121√1−x21√1+x212(0+1)
=−141√(1−x2)(1+x2)
=−141√1−x22
=−121√1−x2
Hence, this is the answer.