y=secxtanx+cosxsinxLet y1=secxtanx,y2=cosxsinx
∴y1=secxtanx
taking log both side,
logy1=tanx.logsecx
diff.w.r.t.x
1y1.dy1dx=tanx.1secx..secxtanx+logsecx.sec2x
1x.dy1dx=tan2x+sec2x.logsecx
∴dydx=y1.(tan2x+sec2x−logsecx)
∴dydxsecxtanx(tan2x+sec2x.logsecx)
y2=cosxsinx
taking log both sides,
logy2=nnx.logcosx
diff.w.r.t.x
1y2.dy2dx=sin.1cosx.−sinx+logcosx.cosx
1y2.dy2dx=−sin2xcosx+logcosx.cosx
dy2dx=y2.[−sin2xcosx+logcosx.cosx]
dy2dx=cosxsinx[−sin2x+cos2x.logcosxcosx]
∴dydx=dy1dx+dy2dx
∴dydx=secxtanx[tan2x+sec2x.logsecx]+cosxsinx−1[−sin2x+cos2x.logxcosx].