wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

y=secxtanx+cosxsinx
find dydx

Open in App
Solution

y=secxtanx+cosxsinx
Let y1=secxtanx,y2=cosxsinx
y1=secxtanx
taking log both side,
logy1=tanx.logsecx
diff.w.r.t.x
1y1.dy1dx=tanx.1secx..secxtanx+logsecx.sec2x
1x.dy1dx=tan2x+sec2x.logsecx
dydx=y1.(tan2x+sec2xlogsecx)
dydxsecxtanx(tan2x+sec2x.logsecx)
y2=cosxsinx
taking log both sides,
logy2=nnx.logcosx
diff.w.r.t.x
1y2.dy2dx=sin.1cosx.sinx+logcosx.cosx
1y2.dy2dx=sin2xcosx+logcosx.cosx
dy2dx=y2.[sin2xcosx+logcosx.cosx]
dy2dx=cosxsinx[sin2x+cos2x.logcosxcosx]
dydx=dy1dx+dy2dx
dydx=secxtanx[tan2x+sec2x.logsecx]+cosxsinx1[sin2x+cos2x.logxcosx].

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon