y=sin√x+cos2√x Find dydx
y=sin√x+(cos√x)2∴ddx[sin(x12)]+ddx[cos(x12)]=cos(x12).ddxx12+2cos(x12)ddx[cos(x12)]=cos(x12)12x−12+2.cos(x12).[−sin(x12.ddxx12)]=cos√x.12√x[−2cos(x12)].sinx12.12√x=12√x[cos(√x)−sin(2√x)]