wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

y = tan1[log(e/x3)log(ex3)]+tan1[3+2logx)16logx)] show that d2ydx2=0

Open in App
Solution

simplify,f(x)=tan1{logeelogex2logee+logex2}+tan1{3+2logx16logx}f(x)=tan1{12lagx1+2logx}+tan1{3+2logx16logx}suppose{12lagx1+2logx}=a,{3+2logx16logx}=btan1a+tan1b=tan1(a+b1ab)wefindthevalueofa&b.a=12logx1+2logxandb=3+2logx16logxa+b=12logx1+2logx+3+2logx16logxa+b=(12logx)(16logx)+(3+2logx)(1+2logx)(1+2logx)(16logx)a+b=16logx2logx+12(logx)2+3+6logx+2logx+4(logx)2(1+2logx)(16logx)a+b=4+16(logx)2(1+2logx)(16logx),wegetvalueof:a+b.Again,findthevalue(1ab)(1ab)=1(12logx1+2logx)(3+2logx16logx)=(1+2logx)(16logx)(12logx)(32logx)(1+2logx)(16logx)=16logx+2logx12(logx)2(3+2logx6logx4(logx)2(1+2logx)(16logx)=16logx+2logx12(logx)232logx+6logx+4(logx)2(1+2logx)(16logx)1ab=28(logx)2(1+2logx)(16logx)|wegetthevalueof1ab.wehave,tan1(a+b1ab)tan1⎜ ⎜ ⎜ ⎜ ⎜4+16(logx)2(1+2logx)(16logx)28(logx)2(1+2logx)(16logx)⎟ ⎟ ⎟ ⎟ ⎟tan1(4(1+4(logx)22(1+4(logx)2)tan1(2)Finallyweget:f(x)=tan1(2)Now,dnydxn=Differentietof.......f(x)=0f′′(x)=0...fn(x)=0So,thatthevalueofdnydxn=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Rate of Change
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon